Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content.
نویسندگان
چکیده
The influence of muscle glycogen content on basal and contraction-induced glucose transport and cell surface GLUT-4 content was studied in rat skeletal muscle. Wistar rats were preconditioned by a combination of swimming exercise and diet, resulting in 40% lower (LG) or threefold higher (HG) muscle glycogen content compared with nonexercised controls (NG). At rest and during contractions, 2-deoxy-d-glucose uptake in perfused fast-twitch muscle, but not slow-twitch muscle, was significantly lower in HG compared with LG. Cell surface GLUT-4 content in the fast-twitch plantaris was 994 ± 180, 1,173 ± 311, and 2,155 ± 243 dpm/g in the basal condition and increased ( P < 0.05) to 2,285 ± 239, 3,230 ± 464, and 4,847 ± 654 dpm/g during contractions with HG, NG, and LG, respectively, the increase being significantly smaller in HG compared with LG. The contraction-induced increments in glucose transport and in cell surface GLUT-4 content were negatively correlated with the initial glycogen content (P <0.01). In conclusion, glucose transport and cell surface GLUT-4 content in resting and contracting fast-twitch muscle are dependent on the muscle glycogen content.
منابع مشابه
Decreased insulin-stimulated GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats.
It was recently found that the effect of an exercise-induced increase in muscle GLUT-4 on insulin-stimulated glucose transport is masked by a decreased responsiveness to insulin in glycogen-supercompensated muscle. We evaluated the role of hexosamines in this decrease in insulin responsiveness and found that UDP- N-acetyl hexosamine concentrations were not higher in glycogen-supercompensated mu...
متن کاملMuscle glycogen content affects insulin-stimulated glucose transport and protein kinase B activity.
We investigated the possible regulatory role of glycogen in insulin-stimulated glucose transport and insulin signaling in skeletal muscle. Rats were preconditioned to obtain low (LG), normal, or high (HG) muscle glycogen content, and perfused isolated hindlimbs were exposed to 0, 100, or 10,000 microU/ml insulin. In the fast-twitch white gastrocnemius, insulin-stimulated glucose transport was s...
متن کاملMechanisms underlying impaired GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats.
Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determ...
متن کاملElectrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle.
Insulin and contraction independently stimulate glucose transport in skeletal muscle. Whereas insulin activates glucose transport more in muscles composed of type I and IIa fibers, electrical stimulation increases glucose transport at least as much in type IIb fiber-enriched muscles despite the fact that the latter fiber type contains less GLUT-4 glucose transporters. The aim of the present stu...
متن کاملCalorie restriction increases cell surface GLUT-4 in insulin-stimulated skeletal muscle.
Reduced calorie intake [calorie restriction (CR); 60% of ad libitum (AL)] leads to enhanced glucose transport without altering total GLUT-4 glucose transporter abundance in skeletal muscle. Therefore, we tested the hypothesis that CR (20 days) alters the subcellular distribution of GLUT-4. Cell surface GLUT-4 content was higher in insulin-stimulated epitrochlearis muscles from CR vs. AL rats. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 277 6 شماره
صفحات -
تاریخ انتشار 1999